2013年6月20日上午10时,浩瀚太空中,我国女航天员王亚平在距离地面约300公里的天宫一号上为青少年进行了一次太空授课,这使她成为中国首位“太空教师”。这是全球第二次太空授课,第一次是2007年,美国女航天员芭芭拉·摩根(Barbara Morgan)在国际空间站上通过视频给地面上的学生们上了25分钟课,主要是展示航天员在太空怎样运动、如何喝水等情景。而此次王亚平的太空授课,着重通过实验演示了失重环境下的一些物理现象。地面课堂设在人大附中,来自北京16所学校的335名学生参加了太空授课,中央电视台全程直播了太空授课并进行了天地互动问答,全国8万余所中学的6000余万名师生同步收听收看了太空授课。
王亚平在此次讲课中主要演示了五个实验,聚焦于失重环境下物体运动的两种特性:质量测量、单摆运动及陀螺实验,展示失重环境中物体运动的特点;水膜和水球实验,展示失重条件下液体表面张力的作用。这些实验看起来简单,但背后蕴藏着丰富的物理内涵。让我们来逐一解读本次太空授课中的物理实验。
失重是太空中最独特的现象。授课一开始,王亚平就请本次飞行的指令长聂海胜表演了一段只有武侠小说中身轻如燕的武林高手才有的“空中悬浮”绝技,及被推动后在空中的漂移运动。其实,这些都是在失重环境下的典型现象。
地球上的重力来源于地球对物体的引力,我们平时称重实际上测量的是重物对支撑物的压力,其大小等于重物所受到的支撑力,这被称为表观重力。所谓失重,是指物体的表观重力小于其受到的引力(即重力)的现象。举个例子来说,在一个重力加速度为g的地方,若有一个电梯以加速度a下降,则在电梯内测到质量为m的物体的表观重力为m(g-a),小于其重力mg,表现为失重。若电梯以重力加速度g下落,则内部的重物与其一道做自由落体运动,在电梯中看物体则处于漂浮状态,表观重力等于零,称为完全失重。在轨道上运行的航天器中,由于物体与航天器一同绕地球运动,具有相同或相近的运动状态,因此它们具有非常接近的向心加速度,和电梯的情况类似,其内部的物体处于完全失重或非常接近于完全失重(其表观重力小于0.001g,被称为微重力)的环境中。在微重力环境中,由于几乎感受不到重力了,这一环境要素的改变导致了我们在地面上习以为常的物理现象发生了巨大的变化,使得一些在地面常重力环境中被重力所掩盖了的次要因素或次级效应彰显出来。科学家通过微重力科学实验,观测不同于地面常重力环境中的独特物理现象,揭示其内在机理,因此促成了一门新的学科“微重力科学”的发展。本次太空授课所做的就是几个展示在微重力条件下物体行为的很有意思的实验。
质量测量
学过中学物理我们就知道,尽管物体所受重力在太空中发生了变化,但物体的质量是守恒的。在地面上,人们一般用天平、台秤、托盘秤、杆秤、弹簧秤等测量物体受到的重力,从而计算物体的质量。在太空中,王亚平将两个质量不同的物体分别挂在相同的弹簧秤上,由于失重,两个弹簧均不伸长。可见,在地面重力环境中我们常用的测量质量的方法在太空微重力环境中已经不再适用。那么如何在微重力环境中测量质量呢?
航天员老师演示了天宫一号上的质量测量仪。他们从天宫一号的舱壁上打开一个支架形状的装置,航天员聂海胜把自己固定在支架一端,王亚平轻轻拉开支架,一放手,支架便在弹簧的作用下回复原位。装置上的LED屏上显示出数字:74.0,这表示聂海胜的实测质量是74千克。
天宫中的质量测量仪,应用的物理学原理是牛顿第二定律:F(力)=m(质量)×a(加速度)。质量测量仪上的弹簧装置能够产生一个恒定的力F,同时用光栅测速装置测量出支架复位的末速度v和时间t,计算出加速度 [a=(v-v0)/t,这里v0=0],就能够计算出物体的质量(m=F/a)。
王亚平随后拿出的弹簧振子教学道具,是通过测量振子不同的振动频率来测量出振子的质量的。若在一个光滑的水平桌面上,放一个质量为m的物体,用一个水平弹簧与其相连,弹簧的另一端固定。物体可静止于使弹簧保持其自然长度的位置,称为平衡位置。当弹簧被拉离平衡位置之后,形变将使其产生一个水平弹性恢复力,其方向指向平衡位置。这里重力与桌面的支撑力相抵消,不影响其水平运动。在弹性恢复力的作用下,物体会围绕着平衡位置振动,其振动频率为 f=1/(2π)(k/m)1/2,这里k为弹簧的弹性恢复系数。若测量出弹性恢复系数及振动频率,则可从上式中解出质量m的值。可以证明,当将弹簧竖直,挂上一个质量为m的物体时,弹簧将被拉长,并可静止于一个平衡位置。当弹簧被拉离这个平衡位置并释放时,它将围绕平衡位置上下振动,其振动频率与水平振子的公式相同。在微重力条件下,振子振动频率的计算公式仍然不变。因此,我们可以从振动频率和弹性恢复系数计算得到物体的质量。
(本文发表于《科学世界》2013年第8期)
请 登录 发表评论